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ABSTRACT
Background Improving the clinical interpretation 
of missense variants can increase the diagnostic 
yield of genomic testing and lead to personalised 
management strategies. Currently, due to the imprecision 
of bioinformatic tools that aim to predict variant 
pathogenicity, their role in clinical guidelines remains 
limited. There is a clear need for more accurate prediction 
algorithms and this study aims to improve performance 
by harnessing structural biology insights. The focus of this 
work is missense variants in a subset of genes associated 
with X linked disorders.
Methods We have developed a protein- specific variant 
interpreter (ProSper) that combines genetic and protein 
structural data. This algorithm predicts missense variant 
pathogenicity by applying machine learning approaches 
to the sequence and structural characteristics of variants.
Results ProSper outperformed seven previously 
described tools, including meta- predictors, in correctly 
evaluating whether or not variants are pathogenic; this 
was the case for 11 of the 21 genes associated with X 
linked disorders that met the inclusion criteria for this 
study. We also determined gene- specific pathogenicity 
thresholds that improved the performance of VEST4, 
REVEL and ClinPred, the three best- performing tools out 
of the seven that were evaluated; this was the case in 
11, 11 and 12 different genes, respectively.
Conclusion ProSper can form the basis of a molecule- 
specific prediction tool that can be implemented 
into diagnostic strategies. It can allow the accurate 
prioritisation of missense variants associated with X 
linked disorders, aiding precise and timely diagnosis. 
In addition, we demonstrate that gene- specific 
pathogenicity thresholds for a range of missense 
prioritisation tools can lead to an increase in prediction 
accuracy.

INTRODUCTION
Advances in high- throughput DNA sequencing tech-
nologies have transformed how clinical diagnoses 
are made in individuals and families with Mende-
lian disorders. Genetics tests using these approaches 
are now widely used in the clinical setting, reducing 
diagnostic uncertainty and improving patient 
management.1 Notably, results of these tests are 
often ambiguous and it is common for these inves-
tigations to yield a number of variants of uncertain 
significance (VUS). Interpreting these VUS is not a 
trivial task and numerous in silico prediction tools 
have been developed to filter and prioritise such 
changes for further analysis. However, these tools 

lack robustness and are commonly inconsistent in 
their predictions2 3 and their performance.4 Taking 
this into account, the American College of Medical 
Genetics and Genomics (ACMG) and the Associa-
tion for Molecular Pathology guidelines for variant 
interpretation5 have concluded that bioinformatics 
tools can provide only supporting evidence for 
pathogenicity. Improving the performance of these 
algorithms is expected to have significant implica-
tions for variant interpretation and ultimately for 
clinical decision making.

In a previous study, we integrated genetic and 
structural biology data to predict variant–disease 
association with high accuracy in the X linked 
gene CACNA1F (MIM: 300110); the area under 
the receiver operating characteristic (ROC) and 
precision–recall (PR) curves was 0.84; Matthews 
correlation coefficient (MCC) was 0.52.6 Here, 
we replicate the accuracy and robustness of this 
approach in several other disease- implicated X 
linked genes. Furthermore, we evaluate seven 
prediction tools and show that the meta- predictors 
REVEL (rare exome variant ensemble learner),7 
VEST4 (variant effect scoring tool 4.0),8 and Clin-
Pred9 are generally the most accurate in predicting 
the impact of missense variants in this group of 
disorders. We also show that applying a gene- 
specific pathogenicity threshold when using these 
tools can improve their performance at least for 
some genes. More importantly, we demonstrate that 
the protein- specific variant interpreter (ProSper) 
that we developed as part of this study performs 
better than REVEL, VEST4 and ClinPred in 11 of 
the 21 studied genes. These insights can help clini-
cians and diagnostic laboratories better prioritise 
missense changes in these molecules.

METHODS
Missense variant data sets
The Human Gene Mutation Database (HGMD 
V.2019.4)10 was used to retrieve missense variants 
that have been associated with disease (marked 
‘DM’), that is, presumably pathogenic. The 
Genome Aggregation Database (gnomAD V.2.1.1)11 
was used to retrieve benign/likely benign missense 
variants reported in males. The variants present 
in gnomAD which were also present in HGMD as 
‘DM?’, that is, disease association is dubious, or as 
‘DM’ were filtered out to minimise the inclusion of 
possible misannotated variants. Missense changes 
reported in patients tested at the Manchester 
Genomic Diagnostic Laboratory (MGDL), a UK 
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accredited genomic diagnostic laboratory (Clinical Pathology 
Accredited identifier no 4015), were also included; these were 
classified using the ACMG guidelines. The rare as well as the 
common variants reported in gnomAD were included in order 
for the model to differentiate the benign rare variants from 
the pathogenic changes.7 We limited our analyses to X linked 
genes from HGMD that contained a minimum of 70 pathogenic 
missense variants as informed by earlier findings.6

Protein structures and homology modelling
Experimentally determined three- dimensional (3D) structures 
were used to perform structural analysis, where available. Other-
wise, a homologous model of the protein was generated using 
either SWISS- MODEL12 or RaptorX.13 These resources provide 
the results of alignments and sequence identity of multiple 
templates informing model selection; RaptorX also allows the 
production of multi- template models. The protein sequences of 
the transcript used in HGMD were obtained from UniProt data-
base.14 PyMOL15 was used to visualise the structures/models.

Performance assessment of in silico tools
A number of prediction tools were evaluated using the two 
variant data sets assembled above. These included SIFT (Sorting 
Intolerant From Tolerant),16 which uses sequence homology 
or conservation, and PolyPhen2 (Polymorphism Phenotyping 
v2),17 which uses sequence homology combined with structural 
properties.18 Other tools assessed in this study included the later 
generation meta- predictors REVEL,7 VEST4,8 ReVe (a combi-
nation of the predictions of REVEL and VEST4),19 ClinPred9 
and CAPICE (Consequence- Agnostic prediction of Pathoge-
nicity Interpretation of Clinical Exome variations).20 Most meta- 
predictors use multiple features in addition to the predictions 
of algorithms like SIFT and PolyPhen2. ClinPred and CAPICE 
were shown to perform well on different data sets.9 20 The vari-
ants’ prediction scores for SIFT, PolyPhen2, REVEL and VEST4 
were obtained from the non- synonymous functional prediction 
database V.4 (dbNSFP21). ReVe,19 ClinPred9 and CAPICE20 
prediction scores were obtained from their respective databases. 
The pathogenicity thresholds used for SIFT, PolyPhen2, VEST4, 
REVEL, ReVe, ClinPred and CAPICE were 0.05, 0.85, 0.5, 0.5, 
0.7, 0.5 and 0.02, respectively, as suggested in the relevant spec-
ifications. The performance of the tools was measured through 
the area under the curve (AUC) of the ROC22 and the PR23 
curves. MCC24 was used to measure the correlation between the 
observed variant class and the predictions made by the tools.

Variant features and analyses
As in our previously described methodology,6 a set of sequence- 
based and structure- based features were defined to integrate 
clinical and structural data. The ‘colour’ column obtained 
from ConSurf server,25 using default parameters, was used 
to measure conservation at the variant site instead of using a 
protein- specific multiple sequence alignment. Differences in 
residue volume were calculated using the Richards scale.26 
Changes in hydrophobicity were identified using a previously 
described hydrophobicity scale which identifies seven residues 
as strongly hydrophobic.27 In addition to these, a number of 
other features were considered. Side- chain solvent accessibility 
was measured using Naccess.28 Information on functional sites, 
protein and topological domains, and secondary structure was 
directly obtained from the UniProt database, when available. 
The predicted secondary structure of the protein was otherwise 
obtained using PyMOL. The probability of a variant affecting 

protein stability or protein–protein interaction was measured 
using predictions made by mCSM (mutation Cutoff Scanning 
Matrix).29 Variants predicted to be in intrinsically disordered 
regions of the protein were identified using IUPRED2A (an 
algorithm for predicting intrinsically unstructured/disordered 
proteins and domains).30 Variants involving residues with special 
physicochemical characteristics were predicted to affect protein 
structure and function, for example, the introduction of proline 
onto β-strands, the introduction/loss of glycine in the core or 
the introduction/loss of cysteine in extracellular regions possibly 
leading to the breakage of disulfide bridges. The features which 
could be retrieved and used for variant annotation in all genes 
were named ‘general features’; these included physicochemical 
changes, solvent accessibility, molecular goodness- of- fit and 
conservation. Other features which could only be retrieved and 
used for variant annotation in certain genes were named ‘gene- 
specific features’; these included variant clustering and protein 
information such as functional domains and binding- site regions, 
where available. These features are further described in online 
supplemental table S1. The scripts used in this study are avail-
able at the following GitHub repository: https:// github. com/ 
shalawsallah/ CACNA1F- variants- analysis.

Machine learning and variant classification
The pathogenicity features that were used to train and validate 
our prediction model (ProSper) used three different classifica-
tion algorithms (Hoeffding tree, logit boost and simple logistic) 
from the machine learning package WEKA (Waikato Envi-
ronment for Knowledge Analysis31) with default parameters. 
Using a 10- fold cross- validation scheme for the classification 
of the variants of each gene, the best- performing algorithm was 
chosen, that is, the algorithm producing the highest MCC value. 
Prior to this, the supervised instance filters ‘ClassBalancer’ and 
‘Discretize’ were applied. The ‘ClassBalancer’ filter compensates 
for the imbalanced data sets by reweighting the instances in the 
data and allocating more weight to the variants in the minority 
class so that each class has the same total weight. For example, 
in data comprising 20 pathogenic and 80 benign variants, the 
weight of each of the 20 variants in the minority class is multi-
plied by 4 in order to create a total weight of 80 in each class. 
The ‘Discretize’ filter discretises numeric features in the data 
set into nominal features. For each gene, the exclusion of some 
features either did not affect model performance or resulted in 
an increase in performance as measured using MCC. Hence, the 
minimum number of features was retained while maintaining 
the highest MCC value for each gene. ‘CorrelationAttributeEval’ 
from WEKA was used as a guide to identify the more informative 
features in differentiating between the two classes of variants. 
‘CorrelationAttributeEval’ evaluates the worth of a feature by 
measuring Pearson’s correlation between it and the class. As a 
result, the number of features included in each model can vary 
(possible total features=22).

Gene-specific threshold identification in publicly available 
tools
Through repeated (n=10) fivefold cross- validation with random 
subsampling, a subset of the prediction scores (80%) generated 
in each gene by VEST4, REVEL and ClinPred were used to iden-
tify a gene- specific threshold. Using the rest of the prediction 
scores (20%), an ‘optimised’ MCC value was reported at the 
newly found gene- specific threshold. The optimised MCC value 
was then used to evaluate the effectiveness of using the identified 
threshold in the performance of these three tools. This was later 
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compared with the corresponding original MCC value which 
was generated using the suggested threshold of 0.5.

RESULTS
Identifying a set of X linked genes to evaluate performance 
of variant interpretation tools
We previously reported a protein- specific or gene- specific 
approach to variant pathogenicity prediction in the X linked 
CACNA1F gene.6 To assess the generalisability of this approach, 
we again selected X linked disease- causing genes as our test case. 
From a total of 482 X linked genes from HGMD, no missense 
variants were reported for 329 genes. Of the remaining 153 
genes, we identified 35 which had at least 70 missense patho-
genic variants. Of these 35 genes, we found 21 that had a 
corresponding 3D protein structure or could be modelled using 
homology modelling. These 21 genes are associated with diseases 
from multiple organ systems (the genes, reference transcripts and 
associated disorders are outlined in online supplemental table 
S2). The gene–disease associations are listed within PanelApp.32 
The 3D protein structures and homologous templates are shown 
in online supplemental table S3.

Data sets
For each gene, data set P comprised missense variants identified 
from HGMD (5690 variants in total) in addition to nine variants 
identified as likely pathogenic in our clinical diagnostic labora-
tory, MGDL. Data set B comprised missense variants identified 
in gnomAD (1615 variants in total) in addition to four likely 
benign variants from MGDL. The MGDL variants were clas-
sified using the ACMG guidelines. All data set B variants were 
identified in hemizygous state only and were absent in data set 
P, that is, the overlaps were removed from data set B. Data sets 
P and B were considered to represent cohorts that were signifi-
cantly skewed towards carrying pathogenic and benign variants, 
respectively. The number of variants in each data set for each 
gene is shown in online supplemental table S4.

Protein structures and homology modelling
Experimentally determined structures were available for 8 of 
21 proteins analysed. For the rest, we were able to identify 
appropriate template structures to produce homology models. 
Templates were chosen if they had 20% sequence identity to 
the protein of interest and covered at least half of the protein 
sequence (online supplemental table S3). RaptorX was used in 
modelling the multi- template OCRL (MIM: 300535) and SWISS- 
MODEL was used to predict the structures of the remaining 
molecules (online supplemental table S3). The variants identi-
fied for each protein were mapped onto the corresponding 3D 
structure/homologous model and their structural impacts were 
assessed. Where structural analysis was not possible (ie, for vari-
ants on sequences missing from the structure or for those on the 
sequences that could not be modelled due to the lack of a homol-
ogous sequence in the template structure; figure 1 and online 
supplemental table S5), protein sequence- based analyses such as 
conservation and amino acid properties were considered.

Assessing performance of current in silico tools to 
differentiate likely pathogenic from likely benign variants
We assessed the performances of seven previously reported 
tools in interpreting pathogenicity of missense variants in the 
21 studied genes. Assessment was based on ROC and PR AUCs 
and MCC. In contrast to using MCC, which requires the identi-
fication of a pathogenicity threshold for a binary classification, 

evaluation using the AUCs does not require a single threshold; 
rather the ROC AUC measures the trade- off between sensitivity 
and specificity of the classifier over a range of thresholds. The 
PR AUC measures the trade- off between precision and recall of 
the classifier. The PR AUC was used to account for the imbal-
ance in numbers between the two classes of variants in data sets 
P and B. Results for all 21 genes are shown in online supple-
mental figures S1–S21. It is notable that the ROC and PR AUCs 
show similar trends for most tools in most (eg, MTM1 (MIM: 
300415) and OCRL; online supplemental figures S15 and S16, 
respectively) but not in all genes (eg, RS1 (MIM: 300839) and 
GLA (MIM: 300644); online supplemental figures S3 and S8, 
respectively). In particular, SIFT predictions result in distinc-
tively smaller PR AUCs in 14 genes compared with the other 
six tools (eg, GJB1 (MIM: 304040), F9 (MIM: 300746) and F8 
(MIM: 300841); online supplemental figures S5, S6 and S19, 
respectively). These differences in the tools’ performances were 
further studied using MCC values following the assignment 
of a pathogenicity threshold for each tool (table 1). MCC is a 
measure of correlation between the observed class of the variants 
and the predictions made by the tools (a value of 1 represents the 
highest correlation, −1 represents a negative correlation, and 0 
represents no correlation). As part of the analysis based on MCC 
we found that REVEL, VEST4 and ClinPred were the best- 
performing tools in interpreting variants in the studied set of 21 
genes. Notably, the difference in medians between the prediction 
scores of these three tools was found to be statistically significant 
(p<0.002 for each of the 21 genes, Kruskal- Wallis test).

Assessing variant pathogenicity using a gene-specific 
approach based on structural analysis
We assessed the accuracy of the gene- specific approach to variant 
prediction (ProSper) that we developed. ProSper is a binary clas-
sifier outputting a prediction probability (figure 2). For each 
gene, the less informative features were excluded and the corre-
sponding best- performing algorithm was chosen based on MCC 
values (online supplemental tables S6 and S7). The number of 
features used to predict pathogenicity ranged from 3 in G6PD 
(MIM: 305900) and IDS (MIM: 300823) to 15 features in 
CLCN5 (MIM: 300008). The most informative feature was 
shown to be residue conservation, which was included in 20 of 
the 21 models. Other informative features included disordered 

Figure 1 The number of missense variants on the modelled and 
unmodelled regions from 21 disease- associated X linked genes. Data 
sets P and B comprised pathogenic and benign variants, respectively. 
The modelled variants represent variants found on regions with a known 
structure, or those found in regions shared by both the homologous 
template and the sequence for the proteins without a structure. The 
unmodelled variants represent variants outside of these regions.
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regions, variants’ solvent accessibility, goodness- of- fit test and 
variants’ impact on protein stability, all of which appeared in at 
least 14 of the models. The performance of ProSper was eval-
uated using ROC AUC which ranged from 0.78 to 1, PR AUC 
which ranged from 0.75 to 1, and MCC which ranged from 
0.55 to a perfect correlation of 1 for G6PD and HPRT1 variants, 
respectively (online supplemental table S8).

Performance comparison
We selected the best- performing tools based on MCC assessment 
and compared them with ProSper. The gene- specific approach 
of ProSper produced a higher MCC value in 11 of the 21 genes 
in comparison with the other three tools (figure 3). ProSper 
and ClinPred accounted for the highest MCC value for variant 
prediction in 17 of the 21 genes, with ClinPred outperforming 

Table 1 MCC used to evaluate the performance of the seven tools

Genes SIFT PolyPhen2 VEST4 REVEL ReVe ClinPred CAPICE

G6PD 0.41 0.42 0.59 0.61 0.56 0.52 0.33

ALAS2 – 0.41 – 0.63 0.61 0.73 0.58

RS1 0.38 0.43 0.69 0.59 0.69 0.69 0.43

MTM1 0.60 0.67 0.71 0.58 0.56 0.66 0.55

OTC 0.38 0.38 0.61 0.46 0.46 0.65 0.51

PHEX 0.42 0.55 0.62 0.58 0.48 0.62 0.41

F8 0.38 0.61 0.75 0.82 0.77 0.74 0.63

IL2RG 0.52 0.59 0.74 0.78 0.61 0.78 0.58

L1CAM 0.42 0.49 0.73 0.65 0.64 0.58 0.51

CLCN5 0.55 0.65 0.59 0.42 0.56 0.58 0.53

IDS 0.62 0.72 0.68 0.64 0.70 0.79 0.67

GLA 0.26 0.29 0.57 0.53 0.51 0.52 0.31

ABCD1 0.60 0.63 0.72 0.68 0.69 0.75 0.53

F9 0.25 0.30 0.39 0.57 0.59 0.50 0.41

GJB1 0.31 0.35 0.49 0.67 0.53 0.53 0.34

AVPR2 0.56 0.59 0.77 0.62 0.75 0.73 0.65

PDHA1 0.62 0.53 0.70 0.60 0.55 0.80 0.57

BTK 0.69 0.52 0.80 0.80 0.76 0.72 0.58

OCRL 0.54 0.76 0.78 0.76 0.68 0.62 0.71

NDP – 0.57 – 0.64 0.59 0.75 0.48

HPRT1 0.44 0.24 0.73 0.62 0.65 0.79 0.48

*As suggested by their respective authors, the pathogenicity thresholds used for SIFT, PolyPhen2, VEST4, REVEL, ReVe, ClinPred and CAPICE were 0.05, 0.85, 0.5, 0.5, 0.7, 0.5 and 
0.02, respectively.
†The highest MCC value for each gene is highlighted in bold.
‡The SIFT and VEST4 prediction scores for ALAS2 and NDP variants in the transcript of interest were unavailable.
MCC, Matthews correlation coefficient.

Figure 2 The performance of ProSper (protein- specific variant 
interpreter) evaluated using Matthews correlation coefficient (MCC) in the 
classification of variants in 21 genes associated with X linked disorders. For 
each gene, the line shows the SD from the repeated (n=10) 10- fold cross- 
validation with random subsampling.

Figure 3 The Matthews correlation coefficient (MCC) values for the 
gene- specific approach ProSper (protein- specific variant interpreter) 
compared with REVEL, VEST4 and ClinPred using the complete data sets. 
The VEST4 MCC results were unavailable as the VEST4 predictions were 
unavailable for the variants in the transcript of interest in ALAS2 and NDP.

 on M
ay 28, 2021 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

edgenet-2020-107404 on 25 M
arch 2021. D

ow
nloaded from

 

https://dx.doi.org/10.1136/jmedgenet-2020-107404
http://jmg.bmj.com/


5Sallah SR, et al. J Med Genet 2021;0:1–8. doi:10.1136/jmedgenet-2020-107404

Diagnostics

ProSper in predicting variants in 6 of these 21 genes (all 6 with 
p<0.05 for difference in means, Wilcoxon signed- rank test). In 
contrast, ProSper outperformed ClinPred in 15 of the 21 genes 
(p<0.01 for difference in means for 13 genes, Wilcoxon signed- 
rank test).

Identifying a gene-specific threshold of pathogenicity for the 
publicly available tools
Small changes in the gene- specific classifier threshold can result 
in large changes to their pathogenicity predictions. There-
fore, we tested the hypothesis that the predictions of the best- 
performing publicly available tools, from the MCC analysis, can 
be optimised by identifying gene- specific thresholds. From 21 
thresholds between 0 and 1, the threshold at which the highest 
MCC value could be obtained was identified and considered to 
be the optimum threshold (online supplemental table S9A). The 
optimum gene- specific thresholds varied widely between genes, 
ranging from 0.24 to 0.84 for VEST4, from 0.29 to 0.86 for 
REVEL, and from 0.39 to 0.95 for ClinPred; variability between 
tools was also observed and the mean value was 0.53, 0.60 and 
0.70 for VEST4, REVEL and ClinPred, respectively. Impor-
tantly, the resulting optimised MCC values showed an increase 
in performance for VEST4, REVEL and ClinPred in 11, 11 and 
12 different genes, respectively, compared with the original 
MCC values (figure 4 and online supplemental table S9B).

When evaluating the three tools’ prediction performance using 
balanced data sets, that is, the same number of variants in both 
classes as the minority class for each gene (online supplemental 
table S4), the gene- specific thresholds identified ranged between 
0.40 and 0.85, 0.40 and 0.87, and 0.59 and 0.95 for VEST4, 
REVEL and ClinPred, respectively; the mean value was 0.64, 
0.68 and 0.85 for VEST4, REVEL and ClinPred, respectively 
(online supplemental table S10a). Furthermore, the resulting 

optimised MCC values showed an increase in performance for 
VEST4, REVEL and ClinPred in 11, 13 and 17 genes, respec-
tively, compared with the original MCC values (figure 4 and 
online supplemental table S10b).

We compared the optimised performance of the three tools 
with that of ProSper. Using all of the data available, that is, imbal-
anced data sets, ProSper outperformed the other three tools in 
10 of the 21 genes. Using balanced data sets, the number of 
genes in which ProSper outperformed the three tools decreased 
to four (figure 5). ProSper outperformed the optimised ClinPred 
in 7 genes using balanced data sets, compared with 12 genes 
using imbalanced data sets. The optimised ClinPred was superior 
to ProSper in 11 genes using balanced data sets, compared with 
9 genes using imbalanced data sets.

DISCUSSION
This study focuses on the analysis of missense changes in genes 
associated with X linked recessive disorders. We used internally 
generated and publicly available variant data sets to evaluate 
existing bioinformatic tools that assess variant pathogenicity. We 
found that using a gene- specific threshold for these algorithms 
results in a better performance in at least 50% of the studied 
genes. We also developed and trained ProSper, a protein- specific 
variant interpreter that combines genetic and protein structural 
data. This tool performed strongly and was found to be better 
than established methods in around 50% of the studied genes.

Of seven publicly available missense prediction tools, Clin-
Pred, VEST4 and REVEL almost always outperformed other 
tools for the 21 genes investigated (table 1). This is in keeping 
with previous reports that have found REVEL and VEST3 (the 
previous version of VEST4) to be among the most accurate 
missense prediction tools available.18 19 However, the findings of 
other reports showing ReVe19 and CAPICE20 to be performing 

Figure 4 A comparison of the default Matthews correlation coefficient (MCC) with the optimised MCC for the performance of VEST4, REVEL and ClinPred 
(left, middle and right panels, respectively) using all of the data sets (the top three panels) and using balanced data sets (the bottom three panels) for the 
21 genes. For each gene, the data set was balanced using undersampling, that is, using a random subset from the majority class to match the number of 
variants in the minority class. The default MCC values were generated using the default threshold of 0.5. The optimised MCC values were generated using 
gene- specific thresholds. The gene- specific threshold was identified using 80% of all the predictions from each tool through repeated (n=10) fivefold cross- 
validation with random subsampling. The optimised MCC value was generated using the rest (20%) of the predictions from each tool at the threshold 
identified for each gene. VEST4 predictions were unavailable for ALAS2 and NDP variants in the respective transcripts of interest. The lines between the 
default MCC and the optimised MCC values for each gene are for visualisation purposes only.
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strongly could not be replicated for this subset of genes using this 
data set. Notably, ProSper outperformed all seven tools in 11 of 
the 21 genes assessed.

Identifying gene- specific thresholds rather than universal 
thresholds resulted in a better performance for VEST4, REVEL 
and ClinPred (figure 4 and online supplemental table S9b). The 
lack of improvement in performance in some genes is prob-
ably due to the default threshold being optimal. The drop in 
performance in other genes, including NDP (MIM: 300658) and 
HPRT1 (MIM: 308000), when a gene- specific threshold was 
used was likely due to the effect of fivefold cross- validation on a 
small and/or an imbalanced data set; this can lead to a threshold 
that is highly skewed by the majority class. Overall, our data 
support that using a gene- specific pathogenicity thresholds can 
optimise these tools’ performance. Such an approach would 
result in these three tools outperforming ProSper in more genes 
(figure 5). These observations support others’ findings.33–36 It 
has been suggested that the use of gene- specific thresholds may 
be necessary if the strength of evidence provided by computa-
tional tools is to be increased from ‘supporting’ to ‘moderate’ in 
the ACMG guidelines.18

ProSper’s performance is not constrained by the input infor-
mation, suggesting that ProSper can be widely applied. First, 
ProSper’s performance was similar when using experimentally 
determined structures compared with when using homology 
models despite the latter being less accurate. Intriguingly, ProS-
per’s lowest performance was for four genes where experimen-
tally determined protein structures were used. It is worth noting 
that ProSper performed equally well where homologous models 
with relatively low sequence identity between the protein of 
interest and the template were used and in models where the 
proteins’ sequence coverage was relatively low. Second, ProS-
per’s performance appeared to be independent of the number 
of variants for each gene and of the ratio of pathogenic to 
benign variants, for example, ALAS2 (MIM: 301300), NDP and 
HPRT1. Finally, ProSper used as few as three features to predict 
variants to achieve a very good performance in a subset of genes 
(including an MCC value of 0.55 and 0.77 for G6PD and IDS, 

respectively). Overall, these observations underline the value of 
gene- specific analysis in variant interpretation.37 38

Gene- specific approaches may be limited by the number of 
variants available for each gene. ProSper is likely to perform 
better in the presence of larger and more balanced data sets, 
although our data from HPRT1 and NDP suggest this might not 
be always necessary. Also, ProSper requires a protein structure 
or a homologous model that covers variants of interest. This is 
lacking for some molecules, although the availability of struc-
tural data is increasing over time; for example, of 66 X linked 
genes in HGMD10 V.2020.4 with 30 or more missense variants 
we found 50 which had a structure or could be modelled (>20% 
sequence identity and >40% protein sequence coverage; data 
not shown), demonstrating the potential applicability of this 
approach as the number of reported variants increases. Notably, 
it was difficult to structurally analyse ‘unmodelled’ variants, that 
is, those missing from the protein structure (indicating disor-
dered regions of the proteins which are difficult to determine) 
and variants found outside of the modelled regions (indicating 
regions lacking sequence conservation). However, in 11 of the 
21 genes, whether or not a variant could be modelled was a 
strong indicator of variant pathogenicity with most unmodelled 
variants being benign. Moreover, ProSper’s performance was 
relatively accurate in genes with structures/models covering only 
58%–64% of the protein sequence (MCC=0.69, MCC=0.77 
and MCC=0.75 for variant classification in L1CAM (MIM: 
308840), IL2RG (MIM: 308380) and F8, respectively) and 
in genes with the lowest proportion of modelled variants 
(MCC=0.69, MCC=0.77 and MCC=0.75 for variant classifi-
cation in L1CAM, IL2RG and CLCN5, respectively). It is worth 
noting that this study is limited by the difficulty in definitively 
assigning variants to either pathogenic or benign classes. There 
is a broad effort from researchers and clinicians to apply most 
up- to- date guidelines when reporting, annotating and depos-
iting variants in ClinVar database,39 which in combination with 
HGMD and gnomAD is becoming a robust resource to exclude 
variants with conflicting evidence/annotations. Finally, it was 
difficult to account for information leakage, that is, the evalu-
ation of the publicly available tools using variants in our data 
set which were used to train these tools initially.40 Information 
leakage likely inflates the true performance of some of these 
prediction tools. Filtering the data set to only include recently 
reported variants can minimise this problem. However, this 
results in the exclusion of a large proportion of the data set 
which constrains a gene- specific classification if the same data 
set is to be used in comparing all tools.

In conclusion, the gene- specific approach that we developed 
(ProSper) often outperformed currently available tools in eval-
uating the pathogenicity of missense variants; this was the case 
for 11 of the 21 X linked disease- implicated genes that met the 
inclusion criteria for this study. In addition, analysis of previously 
reported algorithms revealed that REVEL, VEST4 and ClinPred 
were relatively consistent and accurate for this group of mole-
cules. Generally, using gene- specific pathogenicity thresholds 
increased the prediction performance for all these three tools. 
Despite the gene- dependent optimisation of VEST4, REVEL 
and ClinPred, ProSper outperformed all tools for some genes. 
Hence, the gene- specific structural analysis underlying ProSper 
can contribute to the improvement of variant interpretation, 
enabling precise and timely diagnosis.
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