Non-invasive prenatal solutions for multiple single gene disorders in a single test – <u>I</u>mproved <u>N</u>ext <u>Gen</u>erat<u>io</u>n Sequencing for <u>U</u>ltra<u>s</u>ound Abnormalities (INGENIOUS)

Suzanne Drury¹, Rand Dubis¹, Tim Rayner¹, John Short², Rachel Dunn², Tessa Homfray², Sahar Mansour², Lisa Canclini³, Stephanie Allen⁴, Nick Lench¹, Gavin Guy³ and Basky Thilaganathan³

¹ Congenica Ltd, Wellcome Genome Campus, Hinxton, CB10 1DR; ² Clinical Genetics, St George's University Hospitals NHS Foundation Trust, London SW17 0RE; ³ Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, London SW17 0RE ⁴ West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, B15 2TG

Introduction

- Fetal anomalies are identified in ~3% of pregnancies and are responsible for ~20% of perinatal deaths.
- Approximately 60% of causative mutations in unselected fetal anomaly case series are *de novo* (PMID: 30712880; 30712878).
- De novo mutation rate increases with parental age (PMID: 22914163, 28135719).
- Invasive fetal sampling is currently the only way to comprehensively test fetal genomic material for single gene disorders and is restricted to over 11 weeks gestation.
- Existing non-invasive methods for single gene disorders are targeted to a handful of genes at a time when prenatal phenotype-genotype knowledge is expanding.
- Prenatal molecular diagnosis can inform pregnancy management, (PMID:32981126)
- Non-invasive testing for an uploidy using cell free DNA (cfDNA) is now widely available from 9 weeks gestation.

Objective

To develop a comprehensive assay, analytical and reporting workflow for non-invasive detection of de novo mutations associated with fetal anomalies.

Methods

Results

- Gestation range: 10+6 to 36+4
- Median fetal fraction 12% (3-38%)
- Regardless of variant consequence, 30/43 true *de novo* variants were identified in the cfDNA sample
- After VEP consequence filtering, 16/17 (94%) true *de novo* variants were identified in the cfDNA sample
- *6/6 (100%) true pathogenic *de novo* variants were identified in the cfDNA sample (table 1).
- *Sensitivity and NPV were high, specificity and PPV were low (table 2).
- A median of 1 putative *de novo* variant per case was identified (mode 0, range 0-8).

Gestation (weeks)	Fetal fraction	Gene	Condition	REF/ALT
15	13%	RAF1	Noonan syndrome 5	310/25
28	23%	FGFR3	Achrondoplasia	427/56
14	16%	SOS1	Noonan syndrome 4	675/38
21	13%	COL1A1	Osteogenesis imperfecta	627/40
n/a	22%	NRAS	Noonan syndrome 6	269/25
n/a	16%	NRAS	Noonan syndrome 6	167/17

 $\label{eq:table_transform} \begin{array}{l} \textbf{Table 1:} \\ \text{Summary of cases with molecular diagnoses. All disease causing variants were identified in the non-invasive sample. \end{array}$

Metric	Combined
True positive (TP)	14
False positive (FP)	35
False negative (FN)	2
True negative (TN)	21
Analytical sensitivity (TP/(TP+FN))	88%
Analytical specificity (TN/(TN+FP))	38%
Analytical positive predictive value (TP/(TP+FP))	29%
Analytical negative predictive value (TN/(TN+FN))	91%
Table 2: Analytical validation results.	

Discussion

- This was a proof-of-concept study focussed on technical feasibility. Analysis was not restricted to phenotype relevant genes, which is expected to further reduce the number of variants for review.
- The INGENIOUS comprehensive gene panel and secondary analysis pipeline can be used to detect causative *de novo* variants in cfDNA. This is the most extensive non-invasive prenatal panel presented to date.
- Further work is ongoing to improve sensitivity and increase support for inherited dominant and recessive conditions.